
Beyond Geometric Path Planning:
Learning Context-Driven Trajectory Preferences
via Sub-optimal Feedback

Ashesh Jain, Shikhar Sharma and Ashutosh Saxena

Abstract We consider the problem of learning preferences over trajectories for mo-
bile manipulators such as personal robots and assembly line robots. The preferences
we learn are more intricate than those arising from simple geometric constraints on
robot’s trajectory, such as distance of the robot from human etc. Our preferences are
rather governed by the surrounding context of various objects and human interac-
tions in the environment. Such preferences makes the problem challenging because
the criterion of defining a good trajectory now varies with the task, with the envi-
ronment and across the users. Furthermore, demonstrating optimal trajectories (e.g.,
learning from expert’s demonstrations) is often challenging and non-intuitive on
high degrees of freedom manipulators. In this work, we propose an approach that
requires a non-expert user to only incrementally improve the trajectory currently
proposed by the robot. We implement our algorithm on two high degree-of-freedom
robots, PR2 and Baxter, and present three intuitive mechanisms for providing such
incremental feedback. In our experimental evaluation we consider two context rich
settings – household chores and grocery store checkout – and show that users are
able to train the robot with just a few feedbacks (taking only a few minutes). De-
spite receiving sub-optimal feedback from non-expert users, our algorithm enjoys
theoretical bounds on regret that match the asymptotic rates of optimal trajectory
algorithms.

1 Introduction
Recent advances in robotics have resulted in mobile manipulators with high degree
of freedom (DoF) arms. However, the use of high DoF arms has so far been largely
successful only in structured environments such as manufacturing scenarios where
they perform same repetitive motions (e.g., recent deployment of Baxter on assem-
bly lines). A major challenge in the deployment of these robots in unstructured
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environments (such as a grocery checkout counter or in our homes) is their lack of
understanding of user preferences and thereby not producing desirable motions. In
this work we address the problem of learning preferences over trajectories for high
DoF robots such as Baxter or PR2. We consider a variety of household chores for
PR2 and grocery store checkout tasks for Baxter.

A key problem for high DoF manipulators lies in identifying an appropriate tra-
jectory for a task. An appropriate trajectory not only needs to be valid from a ge-
ometric point (i.e., feasible and obstacle-free, the criterion that most path planners
focus on), but it also needs to satisfy the user’s preferences. Such users’ prefer-
ences over trajectories vary between users, between tasks, and between the environ-
ments the trajectory is performed in. For example, a household robot should move a
glass of water in an upright position without jerks while maintaining a safe distance
from nearby electronic devices. In another example, a robot checking out a santoku
knife1 at a grocery store should strictly move it at a safe distance from nearby hu-
mans. Furthermore, straight-line trajectories in Euclidean space may no longer be
the preferred ones. For example, trajectories of heavy items should not pass over
fragile items but rather move around them. These preferences are often hard to de-
scribe and anticipate without knowing where and how the robot is deployed. This
makes it infeasible to manually encode (e.g., [26]) them in existing path planners
(e.g., [10, 39, 44]) a priori.

We learn user preferences over trajectories via eliciting sub-optimal suggestions
from the user for improving a trajectory. Unlike in other learning settings, where an
expert first demonstrates optimal trajectories [4] for a task to the robot, our learn-
ing model does not rely on the user’s ability to demonstrate optimal trajectories
a priori. Instead, our learning algorithm explicitly guides the learning process and
merely requires the user to incrementally improve the robots trajectories thereby
learning user preferences and not that of expert’s. This procedure of learning from
sub-optimal suggestions is known as coactive learning and has been previously stud-
ied in information retrieval [41]. We contribute by introducing this new method of
learning to the robotics community and highlight its advantages over learning from
demonstration for high DoF robots. We build a system to realize this learning algo-
rithm on PR2 and Baxter robots, and also leverage the robot specific design to allow
users easily give preference feedback required by our algorithm.

Our experiments show that a robot trained using this approach can autonomously
perform new tasks and if need be, only a small number of interactions are sufficient
to tune the robot to the new task. Since the user does not have to demonstrate a
(near) optimal trajectory to the robot, the feedback is easier to provide and more
widely applicable. Nevertheless, it leads to an online learning algorithm with prov-
able regret bounds that decay at the same rate as for optimal demonstrations.

In our empirical evaluation, we learn preferences for a two high DoF robots,
PR2 and Baxter, on a variety of household and grocery checkout tasks respectively.
Using the expressive trajectory features from our previous work [19], we show how
our algorithm learns preferences from online user feedback on a broad range of
tasks for which object properties are of particular importance (e.g., manipulating
sharp objects with humans in the vicinity). We extensively evaluate our approach on

1 A kitchen knife originating in Japan.
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Fig. 1: Re-rank feedback mechanism: (Left) Robot ranks trajectories using the score function
and (Middle) displays top three trajectories on a touch screen device (iPad here). (Right) As feed-
back, the user improves the ranking by selecting the third trajectory.

a set of 35 household tasks and 16 grocery checkout tasks, both in batch experiments
as well as through robotic experiments wherein users provide their preferences on
the robot. Our results show that our system not only quickly learns good trajectories
on individual tasks, but also generalizes well to tasks that the algorithm has not seen
before. We now describe the learning setting along with mechanisms for eliciting
preference feedback and highlight attributes of Baxter robot that makes it well suited
for our algorithm.

2 Coactive learning with incremental feedback
We propose an online algorithm for learning preferences in trajectories from sub-
optimal user feedback. At each step robot receives a task as input and outputs a tra-
jectory that maximizes its current estimate of some score function. It then observes
a user feedback – an improved trajectory – and updates the score function to better
match the user preferences. This procedure of learning via iterative improvement is
known as coactive learning.

Our goal is to even learn from the feedback given by non-expert users. We there-
fore require the feedback to only be incrementally better (as compared to being
close to optimal) in expectation, and will show that such feedback is sufficient for
the algorithm’s convergence. It is in contrast to learning from demonstration (LfD)
methods [1, 25, 36, 37] which require (near) optimal kinesthetic demonstrations of
the complete trajectory. Such demonstrations can be extremely challenging and non-
intuitive to provide for many high DoF manipulators [2]. Instead, we found that it is
more intuitive for users to give an incremental feedback on certain high DoF arms
such as Barrett WAM and Baxter. With a zero-force gravity-compensation (zero-
G) mode, the robot arms becomes light and the users can effortlessly steer them
to desired configuration. On Baxter, this zero-G mode is automatically activated
when a user holds the robot’s wrist (see Figure 2, middle). We use this zero-G mode
as a feedback method for incrementally improving the trajectory by correcting a

Fig. 2: Zero-G feedback mechanism: Robot checking out items in a grocery store moves knife
close to human. (Left) User stops the trajectory and (Middle) activates the zero-G mode by holding
Baxter’s wrist. (Right) User then improves the trajectory by moving the knife away and rotating it.



4 Ashesh Jain, Shikhar Sharma and Ashutosh Saxena

Fig. 3: Re-ranking feedback: Shows three tra-
jectories for moving egg carton from left to
right. Using the current estimate of score func-
tion robot ranks them as red, green and blue. As
feedback user clicks the green trajectory. Pref-
erence: Eggs are fragile. They should be kept
upright and near the supporting surface.

Fig. 4: Interactive feedback. Task here is
to move a bowl filled with water. The robot
presents a bad trajectory with waypoints 1-2-4
to the user. As feedback user moves waypoint
2 (red) to waypoint 3 (green) using Rviz inter-
active markers. The interactive markers guides
the user to correct the waypoint.

waypoint. We now summarize three feedback mechanisms that enable the user to
iteratively provide improved trajectories.
(a) Re-ranking: We display the ranking of trajectories using OpenRAVE [12] on a
touch screen device and ask the user to identify whether any of the lower-ranked
trajectories is better than the top-ranked one. User sequentially observes the tra-
jectories in order of their current predicted scores and clicks on the first trajectory
which is better than the top ranked trajectory. Figure 1 shows three trajectories for
moving knife. As feedback user moves the trajectory at rank 3 to the top position.
Likewise, Figure 3 shows three trajectories for moving an egg carton. Using the cur-
rent estimate of score function robot ranks them as red (1st ), green (2nd) and blue
(3rd). Since eggs are fragile user moves green trajectory to the top position.

(b) Zero-G: This feedback allows the user to correct trajectory waypoints by
physically changing robot’s arm configuration as shown in Figure 2. This feedback
is useful (i) for bootstrapping the robot, (ii) for avoiding local maxima where the top
trajectories in the ranked list are all bad but ordered correctly, and (iii) when the user
is satisfied with the top ranked trajectory except for minor errors. A counterpart of
this feedback is keyframe based LfD [2] where an expert demonstrates a sequence
of optimal waypoints instead of the complete trajectory.

(c) Interactive: For the robots whose hardware does not permit zero-G feedback,
such as PR2, we built an alternative interactive Rviz-ROS [16] interface for allowing
the users to improve the trajectories by waypoint correction. Figure 4 shows a robot
moving a bowl with one bad waypoint (in red), and the user provides a feedback by
correcting it. This feedback serves the same purpose as zero-G but it’s elicited via
simulator.
Note that in all three kinds of feedback, the user never reveals the optimal trajectory
to the algorithm but just provides a slightly improved trajectory (in expectation).

3 Learning and Feedback Model
We model the learning problem in the following way. For a given task, the robot is
given a context x that describes the environment, the objects, and any other input
relevant to the problem. The robot has to figure out what is a good trajectory y for
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this context. Formally, we assume that the user has a scoring function s∗(x,y) that
reflects how much he values each trajectory y for context x. The higher the score, the
better the trajectory. Note that this scoring function cannot be observed directly, nor
do we assume that the user can actually provide cardinal valuations according to this
function. Instead, we merely assume that the user can provide us with preferences
that reflect this scoring function. The robot’s goal is to learn a function s(x,y;w)
(where w are the parameters to be learned) that approximates the user’s true scoring
function s∗(x,y) as closely as possible.
Interaction Model. The learning process proceeds through the following repeated
cycle of interactions.
Step 1: The robot receives a context x and uses a planner to sample a set of trajecto-
ries, and ranks them according to its current approximate scoring function s(x,y;w).
Step 2: The user either lets the robot execute the top-ranked trajectory, or corrects
the robot by providing an improved trajectory ȳ. This provides feedback indicating
that s∗(x, ȳ)> s∗(x,y).
Step 3: The robot now updates the parameter w of s(x,y;w) based on this preference
feedback and returns to step 1.
Regret. The robot’s performance will be measured in terms of regret, REGT =
1
T ∑

T
t=1[s

∗(xt ,y∗t )− s∗(xt ,yt)], which compares the robot’s trajectory yt at each time
step t against the optimal trajectory y∗t maximizing the user’s unknown scoring func-
tion s∗(x,y), y∗t = argmaxys∗(xt ,y). Note that the regret is expressed in terms of the
user’s true scoring function s∗, even though this function is never observed. Regret
characterizes the performance of the robot over its whole lifetime, therefore reflect-
ing how well it performs throughout the learning process. We will employ learning
algorithms with theoretical bounds on the regret for scoring functions that are linear
in their parameters, making only minimal assumptions about the difference in score
between s∗(x, ȳ) and s∗(x,y) in Step 2 of the learning process.

4 Learning Algorithm
For each task, we model the user’s scoring function s∗(x,y) with the following
parametrized family of functions.

s(x,y;w) = w ·φ(x,y) (1)
w is a weight vector that needs to be learned, and φ(·) are features describing tra-
jectory y for context x. We further decompose the score function in two parts, one
only concerned with the objects the trajectory is interacting with, and the other with
the object being manipulated and the environment

s(x,y;wO,wE) = sO(x,y;wO)+ sE(x,y;wE) = wO ·φO(x,y)+wE ·φE(x,y) (2)
For more details on the features φO(·) and φE(·), we refer the readers to our

previous work Jain et. al. [19].

4.1 Computing Trajectory Rankings
For obtaining the top trajectory (or a top few) for a given task with context x, we
would like to maximize the current scoring function s(x,y;wO,wE).

y∗ = argmax
y

s(x,y;wO,wE). (3)
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Second, for a given set {y(1), . . . ,y(n)} of discrete trajectories, we need to com-
pute (3). Fortunately, the latter problem is easy to solve and simply amounts
to sorting the trajectories by their trajectory scores s(x,y(i);wO,wE). Two effec-
tive ways of solving the former problem is either discretizing the state space
or directly sampling trajectories from the continuous space. Previously both ap-
proaches [3, 6, 7, 11, 46] have been studied. However, for high DoF manipulators
sampling based approaches [6, 11] maintain tractability of the problem, hence we
take this approach. More precisely, similar to Berg et al. [6], we sample trajecto-
ries using rapidly-exploring random tree (RRT) [27].2 Since our primary goal is to
learn a score function on trajectories we now describe our learning algorithm and
for more details on sampling trajectories we refer interested readers to [15, 17].

4.2 Learning the Scoring Function

[b]Algorithm 1 Trajectory Preference
Perceptron. (TPP)

Initialize w(1)
O ← 0, w(1)

E ← 0
for t = 1 to T do

Sample trajectories {y(1), ...,y(n)}
yt = argmaxys(xt ,y;w(t)

O ,w(t)
E )

Obtain user feedback ȳt

w(t+1)
O ← w(t)

O +φO(xt , ȳt)−φO(xt ,yt)

w(t+1)
E ← w(t)

E +φE(xt , ȳt)−φE(xt ,yt)
end for

Fig. 5: Shows our system design, for grocery store settings, which provides users with three choices
for iteratively improving trajectories. In one type of feedback (zero-G or interative feedback in
case of PR2) user corrects a trajectory waypoint directly on the robot while in the second (re-rank)
user chooses the top trajectory out of 5 shown on the simulator.
The goal is to learn the parameters wO and wE of the scoring function s(x,y;wO,wE)
so that it can be used to rank trajectories according to the user’s preferences. To do
so, we adapt the Preference Perceptron algorithm [41] as detailed in Algorithm 1,
and we call it the Trajectory Preference Perceptron (TPP). Given a context xt , the
top-ranked trajectory yt under the current parameters wO and wE , and the user’s
feedback trajectory ȳt , the TPP updates the weights in the direction φO(xt , ȳt)−
φO(xt ,yt) and φE(xt , ȳt)−φE(xt ,yt) respectively. Figure 5 shows an overview of our
system design.

Despite its simplicity and even though the algorithm typically does not receive
the optimal trajectory y∗t = argmaxy s∗(xt ,y) as feedback, the TPP enjoys guaran-
tees on the regret [41]. We merely need to characterize by how much the feedback
improves on the presented ranking using the following definition of expected α-
informative feedback: Et [s∗(xt , ȳt)]≥ s∗(xt ,yt)+α(s∗(xt ,y∗t )− s∗(xt ,yt))−ξt . This
definition states that the user feedback should have a score of ȳt that is – in ex-
pectation over the users choices – higher than that of yt by a fraction α ∈ (0,1]

2 When RRT becomes too slow, we switch to a more efficient bidirectional-RRT.The cost function
(or its approximation) we learn can be fed to trajectory optimizers like CHOMP [39] or optimal
planners like RRT* [23] to produce reasonably good trajectories.
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of the maximum possible range s∗(xt , ȳt)− s∗(xt ,yt). If this condition is not ful-
filled due to bias in the feedback, the slack variable ξt captures the amount of
violation. In this way any feedback can be described by an appropriate combi-
nation of α and ξt . Using these two parameters, the proof by Shivaswamy and
Joachims [41] can be adapted to show that average regret of TPP is upper bounded
by E[REGT ]≤ O( 1

α
√

T
+ 1

αT ∑
T
t=1 ξt).

5 Related Work
Teaching a robot to produce desired motions has been a long standing goal and
several approaches have been studied. Most of the past research has focussed on
mimicking expert’s demonstrations, for example, autonomous helicopter flights [1],
ball-in-a-cup experiment [25], planning 2-D paths [36, 37], etc. Such settings (learn-
ing from demonstration, LfD) assume that kinesthetic demonstrations are intuitive
to an end-user and it is clear to an expert what constitutes a good trajectory. In many
scenarios, especially involving high DoF manipulators, this is extremely challenging
to do [2].3 This is because the users have to give not only the end-effector’s loca-
tion at each time-step, but also the full configuration of the arm in a spatially and
temporally consistent manner. In our setting, the user never discloses the optimal
trajectory (or provide optimal feedback), but instead, the robot learns preferences
from sub-optimal suggestions for how the trajectory can be improved.

Some later works in LfD provided ways for handling noisy demonstrations, un-
der the assumption that demonstrations are either near optimal [48] or locally opti-
mal [29]. Providing noisy demonstrations is different from providing relative pref-
erences, which are biased and can be far from optimal. We compare with an al-
gorithm for noisy LfD learning in our experiments. A recent work [47] leverages
user feedback to learn rewards of a Markov decision process. Our approach ad-
vances over [47] and Calinon et. al. [9] in that it models sub-optimality in user
feedback and theoretically converges to user’s hidden score function. We also cap-
ture the necessary contextual information for household and grocery store robots,
while such context is absent in [9, 47]. Our application scenario of learning trajec-
tories for high DoF manipulations performing tasks in presence of different objects
and environmental constraints goes beyond the application scenarios that previous
works have considered. We use appropriate features that consider robot configura-
tions, object-object relations, and temporal behavior, and use them to learn a score
function representing the preferences in trajectories.

In other related works, Berenson et al. [5] and Phillips et al. [34] consider the
problem of trajectories for high-dimensional manipulators. They store prior trajec-
tories for computational reasons for different tasks. These methods are complemen-
tary to ours, in that we could leverage their database of trajectories and train our
system on samples drawn from it. Other recent works such as [14, 13, 45] consider
generating human-like trajectories. These works are complementary to ours in that
humans-robot interaction is an important aspect and such ideas could be incorpo-
rated in our approach.

3 Consider the following analogy. In search engine results, it is much harder for the user to provide
the best web-pages for each query, but it is easier to provide relative ranking on the search results
by clicking.
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In past, learning from demonstration [18, 31] and various interactive methods
(e.g. human gestures) [8, 43] have been employed to teach assembly line robots.
However, these methods either required the user to demonstrate an optimal trajec-
tory or interactively show the complete sequence of actions which the robot re-
membered for future use. Recent works [32, 33] in human robot collaboration learn
human preferences over a sequence of sub-tasks in assembly line manufacturing.
However, these works are agnostic to the user preferences over robot’s trajectories.
Our algorithm can complement their’s by learning preferences over the trajectories
thereby achieving better human robot collaboration.

6 Experiments and Results
We first describe our experimental setup, then present quantitative results (Sec-
tion 6.2) , and then present robotic experiments on PR2 and Baxter (Section 6.3).
6.1 Experimental Setup
Task and Activity Set for Evaluation. We evaluate our approach on 35 robotic
tasks in household setting and 16 pick-and-place tasks in a grocery store checkout
setting. For household activities we use PR2, and use Baxter for the grocery store
setting. To assess the generalizability of our approach, for each task we train and test
on scenarios with different objects being manipulated, and/or with a different envi-
ronment. We evaluate the quality of trajectories after the robot has grasped the items
and while it moves them for checkout. Our work complements previous works on
grasping items [40, 28], pick and place tasks [20], and detecting bar code for grocery
checkout [24]. We consider following three most commonly occurring activities in
household and grocery stores:
1) Manipulation centric: These activities primarily care for the object being manip-
ulated. Hence the object’s properties and the way robot moves it in the environment
is more relevant. Examples of such household activities are pouring water into a
cup or inserting pen inside a pen holder, Figure 6 (Left). While in grocery store
such activities could include moving flower vase, or moving fruits and vegetables,
which can be damaged when dropped/pushed into other items. We consider pick-
and-place, pouring and inserting activities with following objects: cup, bowl, bot-
tle, pen, cereal box, flower vase, tomatoes. Further, in every environment we place
many objects, alongwith the object to be manipulated, to restrict simple straight line
trajectories.
2) Environment centric: These activities also care for the interactions of the object
being manipulated with the surrounding objects. Our object-object interaction fea-
tures [19] allow the algorithm to learn preferences on trajectories for moving fragile
objects like egg cartons or moving liquid near electronic devices, Figure 6 (Middle).
We consider moving fragile items like egg carton, heavy metal boxes near a glass
table, water near laptop and other electronic devices.
3) Human centric: Sudden movements by the robot put the human in a danger of
getting hurt. We consider activities where a robot manipulates sharp objects such as
knife, Figure 6 (Right), moves a hot coffee cup or a bowl of water with a human in
vicinity.
Baseline algorithms. We evaluate the algorithms that learn preferences from online
feedback, under two settings: (a) untrained, where the algorithms learn preferences
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Manipulation centric Environment centric Human centric

(a)Moving flower vase (b)Checking out eggs (c)Manipulating knife

Baxter in a grocery store setting.

(a)Pouring water (b)Moving liquid near laptop (c)Manipulating sharp object

PR2 in a household setting.

Fig. 6: Robot demonstrating different grocery store and household activities with various objects
(Left) Manipulation centric: while pouring water the tilt angle of bottle must change in a particular
manner, similarly a flower vase should be kept upright. (Middle) Environment centric: laptop is an
electronic device so robot must carefully move water near it, similarly eggs are fragile and should
not be lifted too high. (Right) Human centric: knife is sharp and interacts with nearby soft items
and humans. It should strictly be kept at a safe distance from humans. (Best viewed in color)

for the new task from scratch without observing any previous feedback; (b) pre-
trained, where the algorithms are pre-trained on other similar tasks, and then adapt
to the new task. We compare the following algorithms:

• Geometric: It plans a path, independent of the task, using a BiRRT [27] planner.
• Manual: It plans a path following certain manually coded preferences.
• TPP: Our algorithm, evaluated under both untrained and pre-trained settings.
• Oracle-svm: This algorithm leverages the expert’s labels on trajectories (hence

the name Oracle) and is trained using SVM-rank [21] in a batch manner. This
algorithm is not realizable in practice, as it requires labeling on the large space
of trajectories. We use this only in pre-trained setting and during prediction it just
predicts once and does not learn further.
• MMP-online: This is an online implementation of Maximum margin planning

(MMP) [37, 38] algorithm. MMP attempts to make an expert’s trajectory better
than any other trajectory by a margin, and can be interpreted as a special case
of our algorithm with 1-informative feedback. However, adapting MMP to our
experiments poses two challenges: (i) we do not have knowledge of optimal tra-
jectory; and (ii) the state space of the manipulator we consider is too large, and
discretizing makes learning via MMP intractable. We therefore train MMP from
online user feedback observed on a set of trajectories. We further treat the ob-
served feedback as optimal. At every iteration we train a structural support vector
machine (SSVM) [22] using all previous feedback as training examples, and use
the learned weights to predict trajectory scores for the next iteration. Since we
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Same environment, different object. New Environment, same object. New Environment, different object.
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Results on PR2 in household setting.

Fig. 7: Study of generalization with change in object, environment and both. Manual, Oracle-SVM,
Pre-trained MMP-online (—), Untrained MMP-online (– –), Pre-trained TPP (—), Untrained TPP
(– –).

learn on a set of trajectories, the argmax operation in SSVM remains tractable.
We quantify closeness of trajectories by the l2−norm of difference in their feature
representations, and choose the regularization parameter C for training SSVM in
hindsight, to give an unfair advantage to MMP-online.

Evaluation metrics. In addition to performing a user study (Section 6.3), we also
designed two datasets to quantitatively evaluate the performance of our online algo-
rithm. We obtained experts labels on 1300 trajectories in grocery setting and 2100
trajectories in household setting. Labels were on the basis of subjective human pref-
erences on a Likert scale of 1-5 (where 5 is the best). Note that these absolute ratings
are never provided to our algorithms and are only used for the quantitative evalua-
tion of different algorithms. We quantify the quality of a ranked list of trajectories by
its normalized discounted cumulative gain (nDCG) [30] at positions 1 and 3. While
nDCG@1 is a suitable metric for autonomous robots that execute the top ranked tra-
jectory (e.g., grocery checkout), nDCG@3 is suitable for scenarios where the robot
is supervised by humans, (e.g., assembly lines). We also report average nDCG value
over a given number of feedback iterations.

6.2 Results and Discussion
We now present the quantitative results where we compare TPP against the baseline
algorithms on the data set of labeled trajectories.
How well does TPP generalize to new tasks? To study generalization of preference
feedbacks we evaluate performance of TPP-pre-trained (i.e., TPP algorithm under
pre-trained setting) on a set of tasks the algorithm has not seen before. We study
generalization when: (a) only the object being manipulated changes, e.g., a bowl
replaced by a cup or an egg carton replaced by tomatoes, (b) only the surround-
ing environment changes, e.g., rearranging objects in the environment or changing
the start location of tasks, and (c) when both change. Figure 7 shows nDCG@3
plots averaged over tasks for all types of activities for both household and grocery
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Grocery store setting on Baxter. Household setting on PR2.

Algorithms Manip. Environ. Human Mean Manip. Environ. Human Meancentric centric centric centric centric centric
Geometric .46 (.48) .45 (.39) 0.31 (.30) .40 (.39) .36 (.54) .43 (.38) .36 (.27) .38 (.40)

Manual .61 (.62) .77 (.77) .33 (.31) .57 (.57) .53 (.55) .39 (.53) .40 (.37) .44 (.48)
MMP-online .47 (.50) .54 (.56) .33 (.30) .45 (.46) .83 (.82) .42 (.51) .36 (.33) .54 (.55)

TPP .88 (.84) .90 (.85) .90 (.80) .89 (.83) .93 (.92) .85 (.75) .78 (.66) .85 (.78)
Table 1: Comparison of different algorithms in untrained setting. Table contains
nDCG@1(nDCG@3) values averaged over 20 feedbacks.

store settings.4 TPP-pre-trained starts-off with higher nDCG@3 values than TPP-
untrained in all three cases. Further, as more feedback are provided, performance of
both algorithms improves and they eventually give identical performance. We fur-
ther observe, generalizing to tasks with both new environment and object is harder
than when only one of them changes.
How does TPP compare to MMP-online? MMP-online proceeds by assuming
every user feedback as optimal, and hence over the time it accumulates many
contradictory/sub-optimal training examples. We empirically observe MMP-online
generalizes better in grocery store setting than the household setting (Figure 7),
however under both settings its performance remains much below TPP. This also
highlights the sensitivity of MMP to sub-optimal demonstrations.
How does TPP compare to Oracle-svm? Oracle-svm starts off with nDCG@3 val-
ues higher than any other algorithm (Figure 7). The reason being, it is pre-trained
using expert’s labels on trajectories, and for the same reason it not realizable in prac-
tice. Furthermore, in less than 5 feedback on new task TPP improves over Oracle-
svm, which is not updated since it requires expert’s labels on test set.
How does TPP compare to Manual? We encode some preferences into the plan-
ners e.g., keep a glass of water upright. However, some preferences are difficult
to specify, e.g., not to move heavy objects over fragile items. We empirically found
(Figure 7) the resultant manual algorithm produces poor trajectories – in comparison
with TPP – with an average nDCG@3 of 0.44 over all types of household activities.
Table 1 reports nDCG values averaged over 20 feedback in untrained setting. For
both household and grocery checkout activities TPP performs better than other base-
line algorithms.
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Fig. 8: Study of re-rank feedback.

How does TPP perform with weaker feed-
back? To study the robustness of TPP to less
informative feedback we consider the following
variants of re-rank feedback:
1. Click-one-to-replace-top: User observes the
trajectories sequentially in order of their current
predicted scores and clicks on the first trajectory
which is better than the top ranked trajectory.
2. Click-one-from-5: Top 5 trajectories are shown and user clicks on the one he
thinks is the best after watching all 5 of them.
3. Approximate-argmax: This is a weaker feedback, here instead of presenting top
ranked trajectories, five random trajectories are selected as candidate. The user se-

4 Similar results were obtained with nDCG@1 metric, not included here due to space constraints.
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Grocery store setting on Baxter.
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Fig. 9: (Left) Average quality of the learned trajectory after every one-third of total feedback.
(Right) Bar chart showing the average number of feedback (re-ranking and zero-G) and time re-
quired (only for grocery store setting) for each task. Task difficulty increases from 1 to 10.

lects the best trajectory among these 5 candidates. This simulates a situation when
computing an argmax over trajectories is prohibitive and therefore approximated.
Figure 8 shows the performance of TPP-untrained receiving different kinds of feed-
back and averaged over three types of activities in grocery store setting. When feed-
back is more α-informative the algorithm requires fewer of those to learn pref-
erences. In particular, click-one-to-replace-top and click-one-from-5 are more in-
formative than approximate-argmax and therefore require fewer feedback to reach
a given nDCG@1 value. Approximate-argmax being the least informative contin-
ues to show slow improvement. Since all the feedback are α-informative, for some
α > 0, eventually TPP-untrained is able to learn the preferences.

6.3 Robotic Experiment: User Study in learning trajectories
We perform a user study of our system on Baxter and PR2 on a variety of tasks of
varying difficulties in grocery store and household settings respectively. Thereby we
show our approach is practically realizable, and the combination of re-rank, zero-
G/interactive feedback allows users to train the robot in few feedback.
Experiment setup: In this study, five users (not associated with this work) used our
system to train Baxter on grocery checkout tasks, using zero-G and re-rank feed-
back. For training Baxter, the users provided zero-G feedback kinesthetically on the
robot, while re-rank was elicited in a simulator. For PR2, in place of zero-G, two
users provided interactive feedback on Rviz simulator. The two users were familiar
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Fig. 10: Shows trajectories for moving a bowl of water in presence of human. Without learning
robot plans an undesirable trajectory and moves bowl over the human (waypoints 1-3-4). After six
user feedback robot learns the desirable trajectory (waypoints 1-2-4).

Fig. 11: Shows the learned trajectory for moving an egg carton. Since eggs are fragile robot moves
the carton near the table surface. (Left) Start of trajectory. (Middle) Intermediate waypoint with
egg close to the table surface. (Right) End of trajectory.

with Rviz-ROS trained PR2 on household tasks.5 A set of 10 tasks of varying diffi-
culty level was presented to users one at a time, and they were instructed to provide
feedback until they were satisfied with the top ranked trajectory. To quantify the
quality of learning each user evaluated their own trajectories (self score), the trajec-
tories learned by the other users (cross score), and those predicted by Oracle-svm,
on a Likert scale of 1-5 (where 5 is the best). We also recorded the time a user took
for each task – from start of training till the user was satisfied with the top ranked
trajectory.
Is re-rank feedback easier to elicit from users than zero-G or interactive? In our
user study, on average a user took 3 re-rank and 2 zero-G feedback per task to train
a robot (Table 2). From this we conjecture, for high DoF manipulators re-rank feed-
back is easier to provide than zero-G – which requires modifying the manipulator
joint angles. However, an increase in the number of zero-G (interactive) feedback
with task difficulty suggests, Figure 9 (Right), users rely more on zero-G feedback
for difficult tasks since it allows precisely rectifying erroneous waypoints. Figure 10
and Figure 11 show two example trajectories learned by a user.

5 The smaller user size on PR2 is because it requires users with experience in Rviz-ROS. Further,
we also observed users found it harder to correct trajectory waypoints in a simulator than providing
zero-G feedback on the robot. For the same reason we report training time only on Baxter for
grocery store setting.



14 Ashesh Jain, Shikhar Sharma and Ashutosh Saxena

User # Re-ranking # Zero-G Average Trajectory-Quality
feedback feedback time (min.) self cross

1 5.4 (4.1) 3.3 (3.4) 7.8 (4.9) 3.8 (0.6) 4.0 (1.4)
2 1.8 (1.0) 1.7 (1.3) 4.6 (1.7) 4.3 (1.2) 3.6 (1.2)
3 2.9 (0.8) 2.0 (2.0) 5.0 (2.9) 4.4 (0.7) 3.2 (1.2)
4 3.2 (2.0) 1.5 (0.9) 5.3 (1.9) 3.0 (1.2) 3.7 (1.0)
5 3.6 (1.0) 1.9 (2.1) 5.0 (2.3) 3.5 (1.3) 3.3 (0.6)

User # Re-ranking # Interactive Trajectory-Quality
feedbacks feedbacks self cross

1 3.1 (1.3) 2.4 (2.4) 3.5 (1.1) 3.6 (0.8)
2 2.3 (1.1) 1.8 (2.7) 4.1 (0.7) 4.1 (0.5)

Table 2: Shows learning statistics for each user. Self and cross scores of the final learned trajecto-
ries. The number inside bracket is standard deviation. (Top) Results for grocery store on Baxter.
(Bottom) Household setting on PR2.

How many feedback a user takes to improve over Oracle-svm? On average, a
user took 5 feedback to improve over Oracle-svm, Figure 9 (Left), which is also con-
sistent with our quantitative analysis. In grocery setting, user 4 and 5 were critical
towards trajectories learned by oracle-svm and gave them low scores. This indicate
a possible mismatch in preferences between our expert (on whose labels oracle-svm
trained) and user 4, 5.
How do users’ unobserved score functions vary? An average difference of 0.6
between users’ self and cross score (Table 2) in grocery checkout setting suggests
preferences varied across users, but only marginally. In situations where this differ-
ence is significant and a system is desired for a user population, a future work might
explore coactive learning for satisfying user population which has recently been ap-
plied to search engines [35]. For household setting the sample size is small to draw
a such conclusion.
How long does it take for users to train a robot? We report training time only for
grocery store setting, because the interactive feedback in household setting requires
users with experience in Rviz-ROS. Further, we observed that users found it diffi-
cult to modify robot’s joint angles in a simulator to their desired configuration. In
grocery checkout setting, among all the users, user 1 had the strictest preferences
and also experienced some early difficulties in using the system and therefore took
longer than others. On an average, a user took 5.5 minutes per task which we believe
is acceptable for most applications. Future research in human computer interaction,
visualization and better user interface [42] could further reduce this time. For ex-
ample, simultaneous visualization of top ranked trajectories instead of sequentially
showing them to users (which we currently do) could bring down the time for re-
rank feedback. Despite its limited size, through user study we show our algorithm is
realizable in practice on high DoF manipulators. We hope this motivates researchers
to build robotic systems capable of learning from non-expert users.
For more details, videos & code, visit: http://pr.cs.cornell.edu/coactive/

7 Conclusion
With manipulators in human environments, it is important for robots to plan mo-
tions that follow user’s preferences. In this work, we considered preferences that
go beyond simple geometric constraints and that considered surrounding context
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of various objects and humans in the environment. We presented a coactive learn-
ing approach for training robots these preferences through iterative improvements
from non-expert users. Unlike in standard learning from demonstration approaches,
our approach does not require the user to provide optimal trajectories as training
data. We evaluated our approach on various household (with PR2) and grocery store
checkout settings (with Baxter). Our experiments suggest that it is indeed possible
to train robots within a few minutes with just a few incremental feedbacks from
non-expert users.
Acknowledgments. This research was supported by ARO, Microsoft Faculty fel-
lowship and NSF Career award (to Saxena).
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