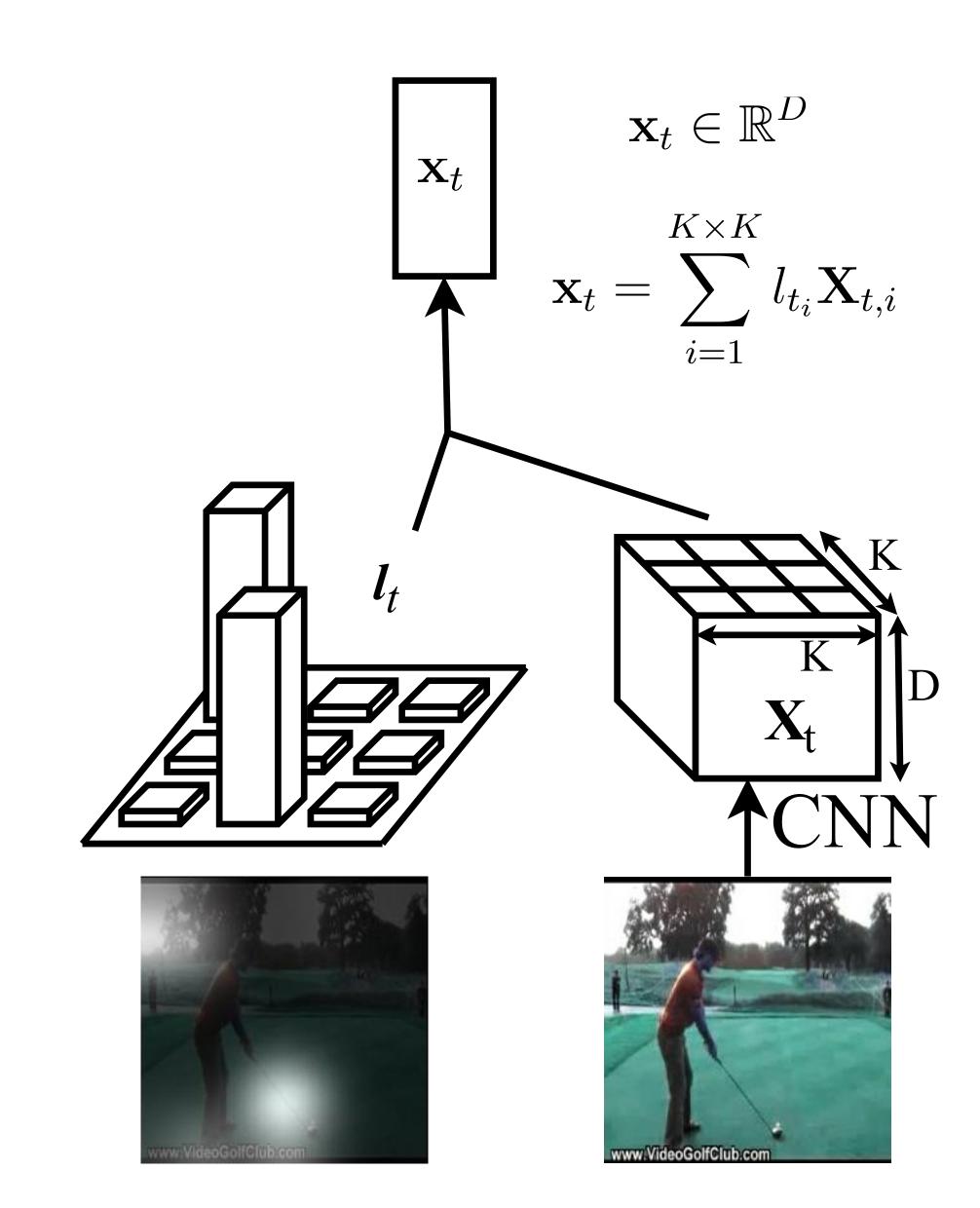


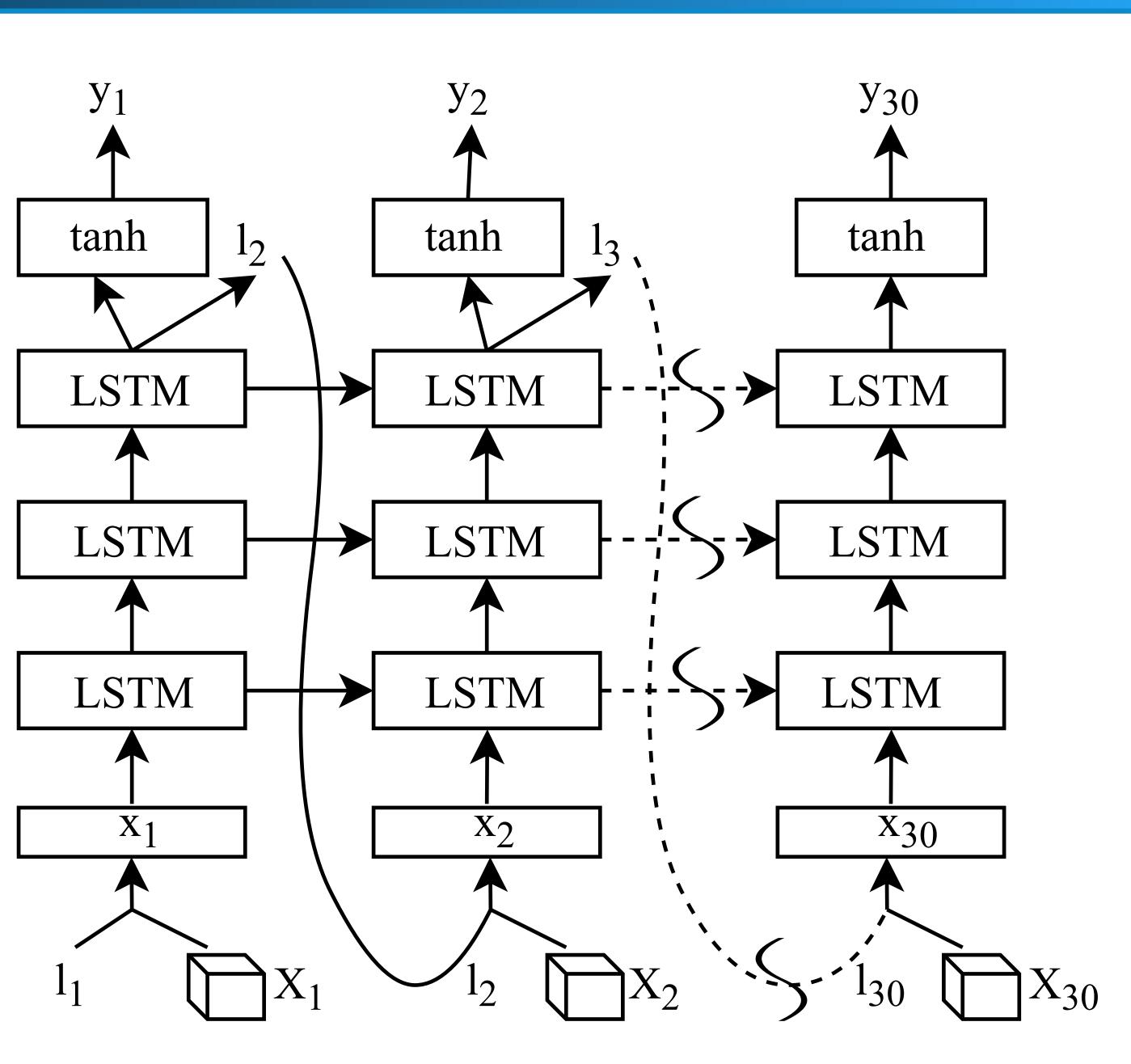
MOTIVATION

- Attention based models have been shown to achieve promising results on several challenging tasks, including caption generation [9], machine translation [1], game-playing and tracking [4].
- Attention based models can potentially infer the action happening in videos by focusing only on the relevant places in each video frame.
- Soft-attention models are deterministic and can be trained using backpropagation.
- We propose a soft-attention based model for action recognition in videos.
- We use multi-layered Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM).
- Our model tends to recognize important elements in video frames based on the activities it detects.

THE ATTENTION MECHANISM AND THE MODEL



(a) The soft-attention mechanism



⁽b) Our recurrent model

- We extract the last GoogLeNet [8] convolutional layer for the video frames.
- The last convolutional layer is a feature cube of shape $K \times K \times D$ (7 \times 7 \times 1024 here). • Feature slices: the K^2 *D*-dimensional vectors within a feature cube.

$$\mathbf{X}_t = [\mathbf{X}_{t,1}, \dots, \mathbf{X}_{t,K^2}], \qquad \qquad \mathbf{X}_{t,i} \in \mathbb{R}$$

- Each of these K^2 vertical feature slices maps to different overlapping regions in the input space and our model chooses to focus its attention on these K^2 regions.
- The location softmax l_t over K^2 locations is:

$$l_{t,i} = p(\mathbf{L}_t = i | \mathbf{h}_{t-1}) = \frac{\exp(W_i^\top \mathbf{h}_{t-1})}{\sum_{j=1}^{K \times K} \exp(W_j^\top \mathbf{h}_{t-1})} \qquad i \in 1.$$

where W_i - the weights mapping to the i^{th} element of the location softmax

- L_t a random variable which can take 1-of- K^2 values
- \mathbf{h}_{t-1} the hidden state at time-step t-1
- The soft attention mechanism computes the expected value of the input at the next time-step \mathbf{x}_t :

$$\mathbf{x}_{t} = \mathbb{E}_{p(\mathbf{L}_{t}|\mathbf{h}_{t-1})}[\mathbf{X}_{t}] = \sum_{i=1}^{K \times K} l_{t,i} \mathbf{X}_{t,i}$$

where \mathbf{X}_t - the feature cube at time-step t

 \mathbf{x}_t - the input to the LSTM at time-step t

Action Recognition using Visual Attention

Shikhar Sharma, Ryan Kiros and Ruslan Salakhutdinov Department of Computer Science, University of Toronto

 L^2 • • • •

LOSS FUNCTION

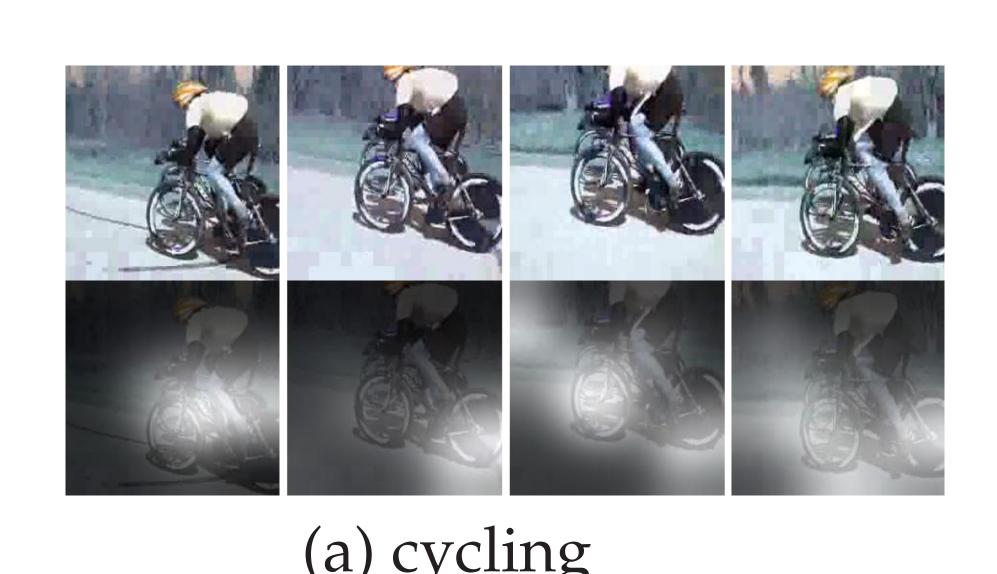
• Loss function: Cross-Entropy loss coupled with the doubly stochastic penalty introduced in [9]:

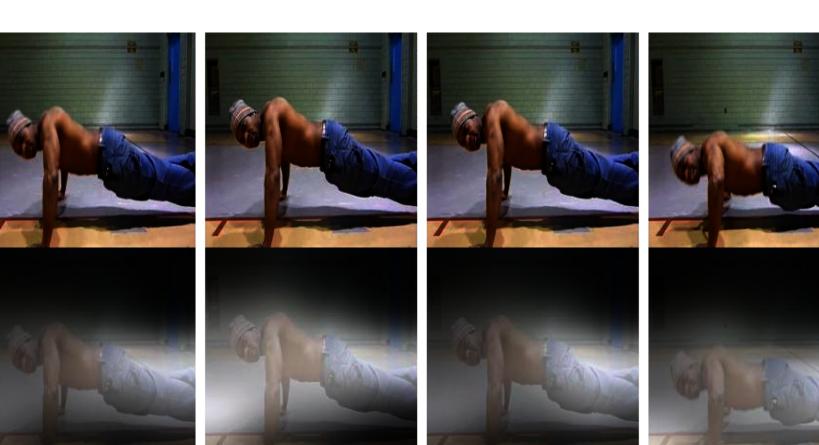
$$L = -\sum_{t=1}^{T} \sum_{i=1}^{C} y_{t,i} \log \hat{y}_{t,i} + \lambda$$

where y_t - one hot label vector

- \hat{y}_t vector of class probabilities at time-step t
- *C* total number of time-steps
- *C* number of output classes
- λ attention penalty coefficient

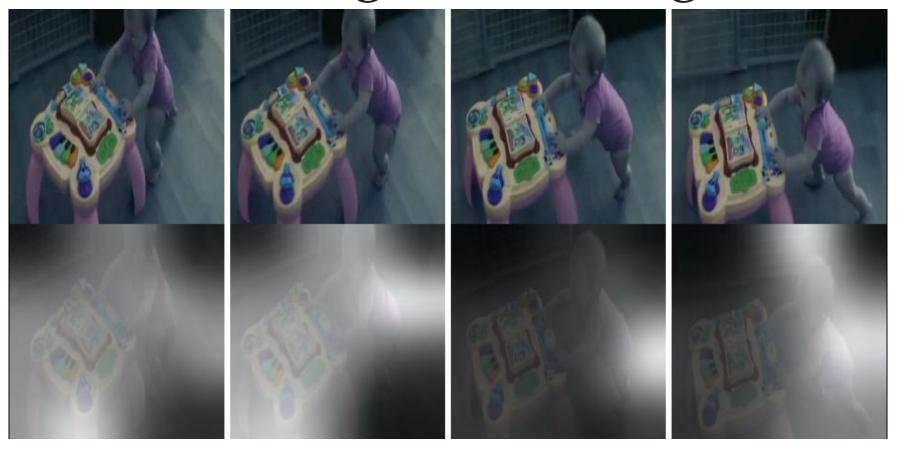
UCF-11, HMDB-51 AND HOLLYWOOD2: QUALITATIVE ANALYSIS





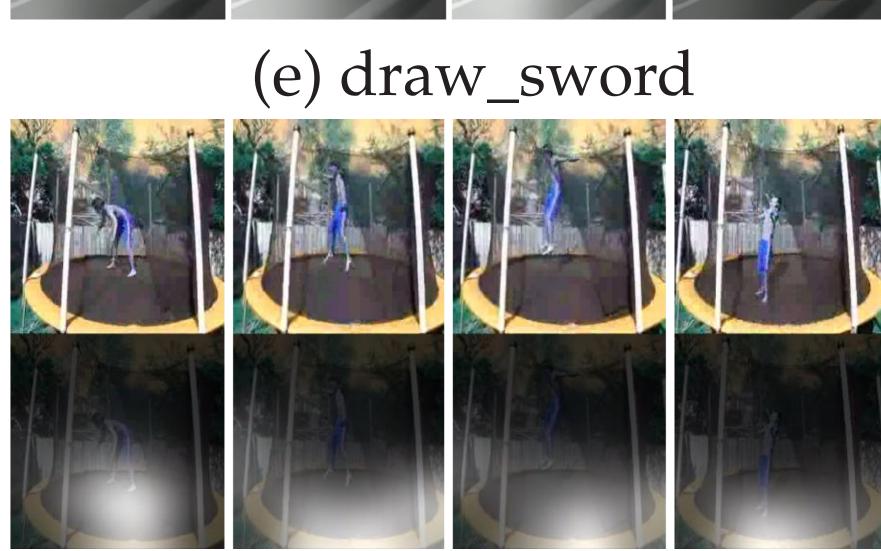
(b) pushup

(d) walking with a dog



(g) push

- We can see that to classify the corresponding activities correctly, the model focuses on
- Fig.(a): parts of the cycle
- Fig.(b): the person doing push-ups
- Among failure cases:
- Fig.(j): the model misclassifies the example despite attending to the relevat location
- Fig.(1): the model misclassifies the example and does not even attend to the relevant location

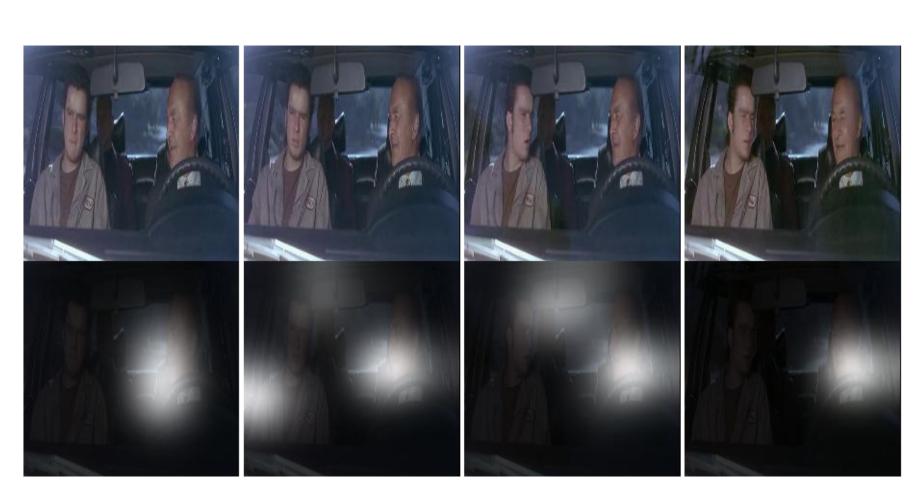


(h) trampoline jumping **Failure cases**: Figure (j)-(l)

(j) "kick_ball" misclassified as "somersault" (k) "soccer juggling" misclassified as "diving"

 $\sum_{K \times K} \frac{T}{(1 - \sum_{i=1}^{T} l_{t_i})^2} + \gamma \sum_{i=1}^{T} \theta_{i,j}^2,$

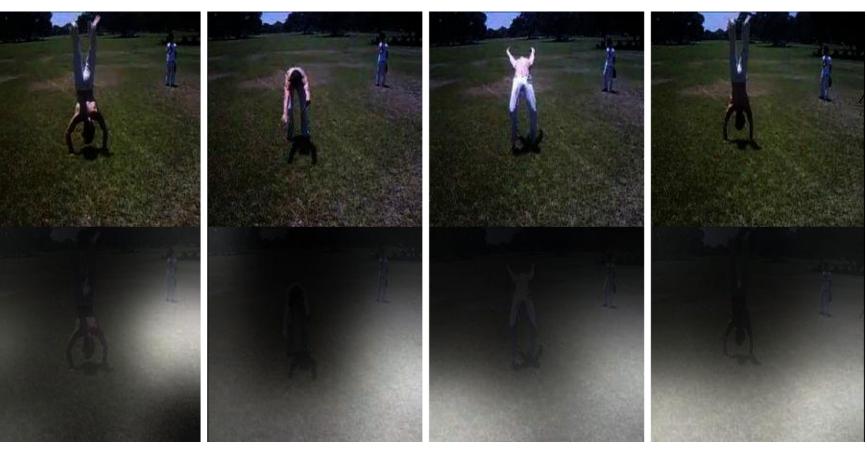
Success cases: Figure (a)-(i)



(c) DriveCar



(i) golf swinging



(l) "flic_flac" misclassified as "hit"

- Fig.(c): the steering wheel, the rear-view mirror
- Fig.(d): the dogs and the person



UCF-11, HMDB-51 AND HOLLYWOOD2: QUANTITATIVE ANALYSIS

Table 1: Perform

Softmax Regress Avg pooled LST Max pooled LS7

Soft attention me

Table 2: Comparison of performance on HMDB-51 and Hollywood2 with state-of-the-art models **HMDR-51** (acc 0/1) **Hollywood2** (m $\Delta D 0/1$) Modal

Spatial stream Con Soft attention mod Composite LSTM I DL-SFA VideoDarwin **Objects+Traditiona**

- We have divided Table 2 into three sections:
- First section: models using only RGB data

- allow scaling to larger datasets like Sports-1M.

REFERENCES

[1]	D. Bahdanau, K. Cho, and Y. Bengio. Neural ma
[2]	B. Fernando, E. Gavves, J. Oramas, A. Ghodrati
[3]	M. Jain, J. C. v. Gemert, and C. G. M. Snoek. Wh
[4]	V. Mnih, N. Heess, A. Graves, and K. Kavukcuc
[5]	K. Simonyan and A. Zisserman. Two-stream co
[6]	N. Srivastava, E. Mansimov, and R. Salakhutdir
[7]	L. Sun, K. Jia, T. Chan, Y. Fang, G. Wang, and S.
[8]	C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, I
[9]	K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R

OPTIMIZING ATTENTION WITH THE CORRECT LABELS

(First) The original video frames

(Second) Failure case of model Prediction: tennis swinging

(Third) Random initialization Prediction: tennis swinging

(Fourth) Attention after optimization Prediction: soccer juggling

ance on UCF-11 (acc %), HMDB-51 (acc %) and Hollywood2 (mAP %)					
Model	UCF-11	HMDB-51	Hollywood2		
ssion (full CNN feature cube)	82.37	33.46	34.62		
TM (@ 30 fps)	82.56	40.52	43.19		
TM (@ 30 fps)	81.60	37.58	43.22		
nodel (@ 30 fps)	84.96	41.31	43.91		

Iviouei			HOILY WOOUZ (mAP %)
nvNet	[5]	40.5	_
del	(Our model)	41.3	43.9
I Model	[6]	44.0	_
	[7]	_	48.1
	[2]	63.7	73.7
nal+Stacked F	Tisher Vectors [3]	71.3	66.4

• Second section: models using both RGB and optical flow data

• Third section: models using RGB, optical flow and object responses on some ImageNet categories

• Using hybrid soft and hard attention models in the future can potentially reduce computation cost and

nachine translation by jointly learning to align and translate. *ICLR*, 2015.

, and T. Tuytelaars. Modeling video evolution for action recognition. In CVPR, 2015.

Vhat do 15,000 object categories tell us about classifying and localizing actions? In *CVPR*, June 2015.

oglu. Recurrent models of visual attention. In *NIPS*, 2014.

convolutional networks for action recognition in videos. In *NIPS*. 2014.

linov. Unsupervised learning of video representations using LSTMs. ICML, 2015.

Yan. DL-SFA: deeply-learned slow feature analysis for action recognition. In *CVPR*, 2014.

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In *CVPR*, 2015.

R. Salakhutdinov, R. S. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. ICML, 2015.